Untuk mempermudah pengucapan kita beri beberapa titik tambahan pada gambar,
Titik pusat lingkaran kita beri nama titik $O$
Pada garis $BC$ kita beri titik $E$ dimana $DE=AB$, sehingga kita peroleh persegi panjang $DEBA$ dan segitiga siku-siku $DEC$
Karena $\bigtriangleup CDE$ adalah segitiga siku-siku maka berlaku;
$sin\ 30^{\circ}=\frac{DE}{CD}$
$\frac{1}{2}=\frac{DE}{8}$
$DE=4$
$CE^{2}+DE^{2}=CD^{2}$
$CE^{2}+4^{2}=8^{2}$
$CE^{2}=64-16$
$CE^{2}=48$
$CE=4\sqrt{3}$
Kita perhatikan kembali $\bigtriangleup ODE$ adalah segitiga sama sisi sehingga $\bigtriangleup OFD$ adalah segitiga siku-siku dan berlaku;
$OD^{2}=OF^{2}+DF^{2}$
$4^{2}=OF^{2}+2^{2}$
$16=OF^{2}+4$
$OF^{2}=16-4$
$OF=\sqrt{12}$
$OF=2 \sqrt{3}$
dari hasil perhitungan diatas bisa kita peroleh panjang $AD$,
$AD=4-2 \sqrt{3}$
$ABCD$ berupa trapesium, luasnya adalah:
$ \left [ABCD \right ]=\dfrac{1}{2} (AE+EB+CD)(BC)$
$ \left [ABCD \right ]=\dfrac{1}{2} (4\sqrt{3}+4-2 \sqrt{3}+4-2 \sqrt{3})(4)$
$ \left [ABCD \right ]=\dfrac{1}{2} (8)(4)$
$ \left [ABCD \right ]=16$
$\therefore$ Pilihan yang sesuai adalah $(D).\ 16$
No comments:
Post a Comment