Ruang Sampel
 $S:$ Dua kelompok masing-masing 3 orang dari 2 siswa laki-laki dan 4 siswa perempuan.
 $n(S)=C_{3}^{6}$
 $n(S)=\frac{6!}{3! \cdot (6-3)!}$
 $n(S)=\frac{6 \cdot 5 \cdot 4 \cdot 3!}{6 \cdot 3!}$
 $n(S)=20$
 
 Kejadian
 $E:$ Setiap kelompok beranggotakan satu siswa laki-laki.
 $n(E)= C_{1}^{2} \cdot C_{2}^{4}$
 $n(E)= 2 \cdot 6 =12$
 
 Peluang kejadian $E$
 $P(E)=\frac{n(E)}{n(S)}$
 $P(E)=\frac{12}{20}$
 $P(E)=\frac{3}{5}$
 
 Untuk kasus ini masih jika belum puas 100 persen, sehingga dicoba manual, hasilnya sebagai berikut;
 Misal anggota OSIS adalah $P_{1},P_{2},P_{3},P_{4},L_{1},L_{2}$.
 $(P_{1},P_{2},P_{3})$;  $(P_{4},L_{1},L_{2})$ | $(P_{1},P_{2},P_{4})$;  $(P_{3},L_{1},L_{2})$ | $(P_{1},P_{2},L_{1})$;  $(P_{3},P_{4},L_{2})$ | $(P_{1},P_{2},L_{2})$;  $(P_{3},P_{4},L_{1})$ | $(P_{1},P_{3},P_{4})$;  $(P_{2},L_{1},L_{2})$ | $(P_{1},P_{3},L_{1})$;  $(P_{2},P_{4},L_{2})$ | $(P_{1},P_{3},L_{2})$;  $(P_{2},P_{4},L_{1})$ | $(P_{1},P_{4},L_{1})$;  $(P_{2},P_{3},L_{2})$ | $(P_{1},P_{4},L_{2})$;  $(P_{2},P_{3},L_{1})$ | $(P_{1},L_{1},L_{2})$;  $(P_{2},P_{3},P_{4})$ 
 Dari 10 kelompok yang mungkin terbentuk 6 diantaranya beranggotakan 1 laki-laki. $P(E)=\frac{6}{10}=\frac{3}{5}$ 
 
No comments:
Post a Comment